library("FSinR")
library("data.table")
library("magrittr")
library("ggplot2")
train_module_scaled=fread("train_module_scaled.csv")
train_module_scaled$Id=as.factor(train_module_scaled$Id)
train_module_scaled$Channels=as.factor(train_module_scaled$Channels)
train_module_scaled$Segments=as.factor(train_module_scaled$Segments)
train_module_scaled$label=as.factor(train_module_scaled$label)
Select K best using Chi_squared https://dicits.ugr.es/software/FSinR/
Compute chi-squared stats between each non-negative feature and class.
This score can be used to select the n_features features with the highest values for the test chi-squared statistic from X, which must contain only non-negative features such as booleans or frequencies (e.g., term counts in document classification), relative to the classes.
Recall that the chi-square test measures dependence between stochastic variables, so using this function “weeds out” the features that are the most likely to be independent of class and therefore irrelevant for classification.
evaluator <- filterEvaluator('chiSquared')
directSearcher <- directSearchAlgorithm('selectKBest', list(k=10))
results <- directFeatureSelection(train_module_scaled, 'label', directSearcher, evaluator)
results$bestFeatures
results$featuresSelected
results$valuePerFeature
Id | Channels | Segments | V1 | V2 | V3 | V4 | V5 | V6 | V7 | ⋯ | V491 | V492 | V493 | V494 | V495 | V496 | V497 | V498 | V499 | V500 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
We select only the best feature, we added the categorical variable (segment and channel), we removed id
train_select=train_module_scaled[,c(2,3,7,8,9,10,382,383,501,502,504)]
train_select_nofactor=train_module_scaled[,c(7,8,9,10,382,383,501,502,504)]
Using mlr3 package for modeling : https://mlr3.mlr-org.com/index.html https://mlr3book.mlr-org.com/basics.html
library("mlr3") # mlr3 base package
library("mlr3misc") # contains some helper functions
library("mlr3pipelines") # create ML pipelines
library("mlr3tuning") # tuning ML algorithms
library("mlr3learners") # additional ML algorithms
library("mlr3viz") # autoplot for benchmarks
library("skimr")
library("GGally")
Attaching package: ‘mlr3misc’ The following objects are masked from ‘package:magrittr’: set_class, set_names Registered S3 method overwritten by 'GGally': method from +.gg ggplot2
Create a Task from mlr3 that we will use for each model.
task = TaskClassif$new(id = "Task", backend = train_select,target = "label")
task
<TaskClassif:Task> (264880 x 11) * Target: label * Properties: twoclass * Features (10): - dbl (8): V379, V380, V4, V498, V499, V5, V6, V7 - fct (2): Channels, Segments
task_nofactor=TaskClassif$new(id = "Task", backend = train_select_nofactor,target = "label")
Let us plot a summary view of our data
skim(task$data())
── Data Summary ──────────────────────── Values Name task$data() Number of rows 264880 Number of columns 11 _______________________ Column type frequency: factor 3 numeric 8 ________________________ Group variables None ── Variable type: factor ─────────────────────────────────────────────────────── skim_variable n_missing complete_rate ordered n_unique 1 label 0 1 FALSE 2 2 Channels 0 1 FALSE 7 3 Segments 0 1 FALSE 40 top_counts 1 0: 206360, 1: 58520 2 1: 37840, 2: 37840, 3: 37840, 4: 37840 3 1: 6622, 2: 6622, 3: 6622, 4: 6622 ── Variable type: numeric ────────────────────────────────────────────────────── skim_variable n_missing complete_rate mean sd p0 p25 p50 1 V379 0 1 1.19e-16 1 -1.76 -0.728 -0.190 2 V380 0 1 1.77e-17 1 -1.79 -0.726 -0.185 3 V4 0 1 -6.49e-17 1 -1.57 -0.758 -0.212 4 V498 0 1 7.26e-17 1 -1.80 -0.743 -0.147 5 V499 0 1 1.05e-16 1 -1.84 -0.745 -0.136 6 V5 0 1 -4.53e-17 1 -1.58 -0.757 -0.208 7 V6 0 1 -1.34e-17 1 -1.59 -0.757 -0.207 8 V7 0 1 -6.62e-17 1 -1.59 -0.760 -0.206 p75 p100 hist 1 0.553 6.02 ▇▆▂▁▁ 2 0.552 6.04 ▇▇▂▁▁ 3 0.564 5.58 ▇▆▂▁▁ 4 0.580 5.41 ▇▇▂▁▁ 5 0.589 5.68 ▇▇▂▁▁ 6 0.565 5.64 ▇▆▂▁▁ 7 0.567 5.73 ▇▆▂▁▁ 8 0.569 5.99 ▇▅▁▁▁
Plot correlation analysis with selected feature expect factor
autoplot(task_nofactor, type = "pairs")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
First, let us define a lositic regression
library("mlr3learners")
learner_logreg = lrn("classif.log_reg")
learner_logreg$predict_type <- "prob"
print(learner_logreg)
<LearnerClassifLogReg:classif.log_reg> * Model: - * Parameters: list() * Packages: stats * Predict Type: prob * Feature types: logical, integer, numeric, character, factor, ordered * Properties: twoclass, weights
# check original class balance
table(task$truth())
0 1 206360 58520
Create class balancing technique : under, over and none
po_under = po("classbalancing",
id = "undersample", adjust = "major",
reference = "major", ratio = 58520 / 206360 )
# reduce majority class by factor '1/ratio'
table(po_under$train(list(task))$output$truth())
0 1 58520 58520
Create a pipe combining undersampling with Log reg learner within mlr3 Graph Learner
graph_down = GraphLearner$new(po_under %>>% learner_logreg)
graph_down$predict_type <- "prob"
Apply same steps for oversampling
lrn_up = po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio =206360 / 58520 ) %>>%
learner_logreg
graph_up <- GraphLearner$new(lrn_up)
graph_up$predict_type <- "prob"
Here we want to benchmark (compare) the results of the different technique. To do that, we use benchmark_grid of mlr3.
Define a splitting technique for benchmark. Here we want that the bench performs on the same split,i.e rsmp("holdout")
hld <- rsmp("holdout")
set.seed(123)
hld$instantiate(task)
bmr <- benchmark(design = benchmark_grid(task = task,
learner = list(learner_logreg,graph_up,
graph_down),
hld),
store_models = TRUE) #only needed if you want to inspect the models
INFO [22:10:31.163] [mlr3] Benchmark with 3 resampling iterations INFO [22:10:31.313] [mlr3] Applying learner 'undersample.classif.log_reg' on task 'Task' (iter 1/1) INFO [22:10:32.064] [mlr3] Applying learner 'oversample.classif.log_reg' on task 'Task' (iter 1/1) INFO [22:10:34.505] [mlr3] Applying learner 'classif.log_reg' on task 'Task' (iter 1/1) INFO [22:10:36.689] [mlr3] Finished benchmark
Retrive results from benchmark with the accuracy metrics (used for the challenge)
bmr$aggregate(msr("classif.acc"))
nr | resample_result | task_id | learner_id | resampling_id | iters | classif.acc |
---|---|---|---|---|---|---|
<int> | <list> | <chr> | <chr> | <chr> | <int> | <dbl> |
1 | <environment: 0xf7fffc0> | Task | classif.log_reg | holdout | 1 | 0.7802431 |
2 | <environment: 0xed97758> | Task | oversample.classif.log_reg | holdout | 1 | 0.5533281 |
3 | <environment: 0x10cb7758> | Task | undersample.classif.log_reg | holdout | 1 | 0.5493074 |
Same for recall and precision
bmr$aggregate(msr("classif.recall"))
nr | resample_result | task_id | learner_id | resampling_id | iters | classif.recall |
---|---|---|---|---|---|---|
<int> | <list> | <chr> | <chr> | <chr> | <int> | <dbl> |
1 | <environment: 0x8f932fa8> | Task | classif.log_reg | holdout | 1 | 1.0000000 |
2 | <environment: 0x8f94ac98> | Task | oversample.classif.log_reg | holdout | 1 | 0.5719988 |
3 | <environment: 0x8f95eb58> | Task | undersample.classif.log_reg | holdout | 1 | 0.5667731 |
bmr$aggregate(msr("classif.precision"))
nr | resample_result | task_id | learner_id | resampling_id | iters | classif.precision |
---|---|---|---|---|---|---|
<int> | <list> | <chr> | <chr> | <chr> | <int> | <dbl> |
1 | <environment: 0x2cbbde48> | Task | classif.log_reg | holdout | 1 | 0.7802431 |
2 | <environment: 0x2cbd1d08> | Task | oversample.classif.log_reg | holdout | 1 | 0.7983508 |
3 | <environment: 0x2cbe99f8> | Task | undersample.classif.log_reg | holdout | 1 | 0.7969506 |
=> Over and undersampling technique do not increase accuracy. Precision is slighlyt better with class balance sampling technique.
But the recall value of classif.log_reg is too high (=1).
We define a train/test split and train our different learners to have a detailed view on the prediction.
# train/test split
train_set <- sample(task$nrow, 0.8 * task$nrow)
test_set <- setdiff(seq_len(task$nrow), train_set)
# train the model
learner_logreg$train(task, row_ids = train_set)
# predict data
prediction <- learner_logreg$predict(task, row_ids = test_set)
# calculate performance
prediction$confusion
truth response 0 1 0 41195 11781 1 0 0
measure <- list(msr("classif.acc"), msr("classif.precision"))
prediction$score(measure)
=> From this first model, we can notice that the better accuracy is confirmed for no sampling techniques.
Nontheless, we can notice from our confusion matrix that this model do not distinct man and woman.
The model has predicted that all ids are men.
One of the main reason is probably coming from imbalanced data. Let us confirm that.
# train/test split
train_set <- sample(task$nrow, 0.8 * task$nrow)
test_set <- setdiff(seq_len(task$nrow), train_set)
# train the model
graph_down$train(task, row_ids = train_set)
# predict data
prediction <- graph_down$predict(task, row_ids = test_set)
# calculate performance
prediction$confusion
truth response 0 1 0 24107 6157 1 17062 5650
measure <- list(msr("classif.acc"), msr("classif.precision"), msr("classif.recall") )
prediction$score(measure)
Here, we can notice that thanks to undersampling the model can distinct men and women. Let us see the results for oversampling.
# train/test split
train_set <- sample(task$nrow, 0.8 * task$nrow)
test_set <- setdiff(seq_len(task$nrow), train_set)
# train the model
graph_up$train(task, row_ids = train_set)
# predict data
prediction <- graph_up$predict(task, row_ids = test_set)
# calculate performance
prediction$confusion
truth response 0 1 0 24083 6167 1 17118 5608
measure <- list(msr("classif.acc"), msr("classif.precision"), msr("classif.recall") )
prediction$score(measure)
=> Precision better, accuracy lower.
Let us use resampling technique with Cross validation set to 3 in order to check consistancy of oversampling technique.
# automatic resampling
resampling <- rsmp("cv", folds = 3L)
rr <- resample(task, graph_up, resampling)
rr$score(measure)
INFO [17:04:50.536] Applying learner 'oversample.classif.log_reg' on task 'Task' (iter 2/3) INFO [17:04:53.243] Applying learner 'oversample.classif.log_reg' on task 'Task' (iter 1/3) INFO [17:04:55.702] Applying learner 'oversample.classif.log_reg' on task 'Task' (iter 3/3)
task | task_id | learner | learner_id | resampling | resampling_id | iteration | prediction | classif.acc | classif.precision | classif.recall |
---|---|---|---|---|---|---|---|---|---|---|
<list> | <chr> | <list> | <chr> | <list> | <chr> | <int> | <list> | <dbl> | <dbl> | <dbl> |
<environment: 0xe8a6008> | Task | <environment: 0x112bbeb8> | oversample.classif.log_reg | <environment: 0xe985ea0> | cv | 1 | <environment: 0x357bcac0> | 0.5622126 | 0.7963402 | 0.5870408 |
<environment: 0xe8a6008> | Task | <environment: 0xdefa978> | oversample.classif.log_reg | <environment: 0xe985ea0> | cv | 2 | <environment: 0x355d5620> | 0.5597386 | 0.7948556 | 0.5859702 |
<environment: 0xe8a6008> | Task | <environment: 0x8a942a8> | oversample.classif.log_reg | <environment: 0xe985ea0> | cv | 3 | <environment: 0x34360000> | 0.5528751 | 0.8015925 | 0.5679952 |
We can notice that classif acc does not change much over different split which allows us to confirm the use of oversampling in our next models.
library("nnet")
library("glmnet")
library("ranger")
library("xgboost")
library("e1071")
library("mlr3keras")
library("keras")
Loading required package: Matrix Loaded glmnet 4.0-2
Here we define different classification models inside pipe with oversampling technique and one-hot factor encoding.
Random Forest
learner_rpart=lrn("classif.rpart")
lrn_up = po("encode",
affect_columns = selector_type("factor")) %>>% po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = 206360 / 58520) %>>%
learner_rpart
learner_rpart <- GraphLearner$new(lrn_up)
learner_rpart$predict_type <- "prob"
Elastic Net Regularization Regression Learner
learner_glmnet=lrn("classif.glmnet")
lrn_up = po("encode",
affect_columns = selector_type("factor")) %>>%po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = 206360 / 58520) %>>%
learner_glmnet
learner_glmnet <- GraphLearner$new(lrn_up)
learner_glmnet$predict_type <- "prob"
Log Regression
learner_log_reg=lrn("classif.log_reg")
lrn_up = po("encode",
affect_columns = selector_type("factor")) %>>% po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = 206360 / 58520) %>>%
learner_log_reg
learner_log_reg <- GraphLearner$new(lrn_up)
learner_log_reg$predict_type <- "prob"
Single-hidden-layer neural network
learner_nnet=lrn("classif.nnet")
lrn_up = po("encode",
affect_columns = selector_type("factor")) %>>% po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = 206360 / 58520) %>>%
learner_nnet
learner_nnet <- GraphLearner$new(lrn_up)
learner_nnet$predict_type <- "prob"
Design benchmark grid. We will compare ou models inside 5 Cross-Validation splits
design = benchmark_grid(
tasks = task,
learners = list(learner_rpart, learner_glmnet,learner_log_reg,learner_nnet),
resamplings = rsmp("cv", folds = 5)
)
print(design)
task learner resampling 1: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 2: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 3: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 4: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]>
Let us lunch our benchmark
bmr = benchmark(design)
INFO [17:11:18.541] Benchmark with 20 resampling iterations INFO [17:11:18.549] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 5/5) INFO [17:11:24.137] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 3/5) INFO [17:11:29.851] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 4/5) # weights: 172 initial value 264657.981997 iter 10 value 228763.547824 iter 20 value 228277.218489 iter 30 value 228145.385222 iter 40 value 228037.532469 iter 50 value 227835.988993 iter 60 value 227667.908812 iter 70 value 227570.947334 iter 80 value 227512.564127 iter 90 value 227485.819576 iter 100 value 227450.941063 final value 227450.941063 stopped after 100 iterations INFO [17:13:17.032] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 3/5) # weights: 172 initial value 237667.525600 iter 10 value 228505.920131 iter 20 value 228223.109239 iter 30 value 228013.458745 iter 40 value 227860.722732 iter 50 value 227764.715398 iter 60 value 227695.073380 iter 70 value 227658.833463 iter 80 value 227630.770935 iter 90 value 227609.674118 iter 100 value 227578.349156 final value 227578.349156 stopped after 100 iterations INFO [17:14:59.751] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 4/5) INFO [17:15:13.472] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 4/5) INFO [17:15:18.110] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 1/5) # weights: 172 initial value 239284.392231 iter 10 value 228288.254456 iter 20 value 227969.882096 iter 30 value 227719.143485 iter 40 value 227595.930580 iter 50 value 227534.393403 iter 60 value 227501.681761 iter 70 value 227473.130276 iter 80 value 227446.708752 iter 90 value 227430.484553 iter 100 value 227409.857005 final value 227409.857005 stopped after 100 iterations INFO [17:16:50.227] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/5) INFO [17:17:04.591] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 5/5) INFO [17:17:18.709] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 3/5) INFO [17:17:33.782] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/5) INFO [17:17:48.858] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 2/5) INFO [17:17:54.105] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 2/5) INFO [17:17:59.083] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 4/5) INFO [17:18:04.484] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 3/5) INFO [17:18:15.274] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 1/5) INFO [17:18:21.044] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 5/5) # weights: 172 initial value 233931.911122 iter 10 value 228568.357057 iter 20 value 228215.531584 iter 30 value 227999.637884 iter 40 value 227913.196217 iter 50 value 227883.278139 iter 60 value 227869.308209 iter 70 value 227853.577419 iter 80 value 227827.015408 iter 90 value 227790.925099 iter 100 value 227737.562772 final value 227737.562772 stopped after 100 iterations INFO [17:19:43.027] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 1/5) INFO [17:19:47.640] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 5/5) INFO [17:19:52.773] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 2/5) # weights: 172 initial value 230330.330006 iter 10 value 228430.512929 iter 20 value 228137.770485 iter 30 value 227874.012810 iter 40 value 227716.132746 iter 50 value 227668.057924 iter 60 value 227631.867363 iter 70 value 227600.483613 iter 80 value 227563.633786 iter 90 value 227536.683432 iter 100 value 227506.154542 final value 227506.154542 stopped after 100 iterations
Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading” Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading” Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading” Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading” Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading”
INFO [17:21:27.329] Finished benchmark
And plot metrics results
measures <- list(msr("classif.acc"), msr("classif.precision"), msr("classif.recall") )
performances = bmr$aggregate(measures)
performances[, c("learner_id", "classif.acc","classif.precision", "classif.recall")]
learner_id | classif.acc | classif.precision | classif.recall |
---|---|---|---|
<chr> | <dbl> | <dbl> | <dbl> |
encode.oversample.classif.rpart | 0.6224819 | 0.7867721 | 0.7073531 |
encode.oversample.classif.glmnet | 0.5647614 | 0.7909598 | 0.5999016 |
encode.oversample.classif.log_reg | 0.5567955 | 0.7980559 | 0.5771730 |
encode.oversample.classif.nnet | 0.5656675 | 0.7907018 | 0.6017975 |
Single layer neural-net does not have bad results.
We construct a more complexe Neural Net to benchmark with other models.
We use keras library which has good framework inside mlr3 package.
# Define a model for Neural Net with default parameters
model = keras_model_sequential() %>%
layer_dense(units = 256, activation = 'relu') %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 2, activation = 'softmax') %>%
compile(optimizer = "adam",
loss = "categorical_crossentropy",
metrics = "accuracy")
# Create the learner
learner_keras_nn = LearnerClassifKeras$new()
learner_keras_nn$param_set$values$model = model
# Create pipeline with oversample
lrn_up = po("encode",
affect_columns = selector_type("factor")) %>>% po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = 206360 / 58520) %>>%
learner_keras_nn
learner_keras_nn <- GraphLearner$new(lrn_up)
learner_keras_nn
<GraphLearner:encode.oversample.classif.keras> * Model: - * Parameters: encode.method=one-hot, encode.affect_columns=<Selector>, oversample.ratio=3.526, oversample.reference=minor, oversample.adjust=minor, oversample.shuffle=FALSE, classif.keras.epochs=100, classif.keras.model=<keras.engine.sequential.Sequential>, classif.keras.validation_split=0.3333, classif.keras.batch_size=128, classif.keras.callbacks=<list>, classif.keras.low_memory=FALSE, classif.keras.verbose=0 * Packages: stats * Predict Type: response * Feature types: logical, integer, numeric, character, factor, ordered, POSIXct * Properties: featureless, importance, missings, multiclass, oob_error, selected_features, twoclass, weights
Let us re-run benchmark with keras
design = benchmark_grid(
tasks = task,
learners = list(learner_rpart, learner_glmnet,learner_log_reg,learner_nnet,learner_keras_nn),
resamplings = rsmp("cv", folds = 2)
)
print(design)
task learner resampling 1: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 2: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 3: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 4: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]> 5: <TaskClassif[45]> <GraphLearner[33]> <ResamplingCV[19]>
bmr = benchmark(design)
INFO [20:16:45.496] [mlr3] Benchmark with 10 resampling iterations INFO [20:16:45.611] [mlr3] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 1/2) INFO [20:16:48.570] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [20:16:55.917] [mlr3] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 1/2) INFO [20:16:59.450] [mlr3] Applying learner 'encode.oversample.classif.glmnet' on task 'Task' (iter 2/2) INFO [20:17:02.566] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [20:17:09.271] [mlr3] Applying learner 'encode.oversample.classif.log_reg' on task 'Task' (iter 2/2) INFO [20:17:11.859] [mlr3] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 2/2) # weights: 172 initial value 155564.411173 iter 10 value 142840.904847 iter 20 value 142653.969158 iter 30 value 142503.601528 iter 40 value 142390.248698 iter 50 value 142318.424466 iter 60 value 142274.553675 iter 70 value 142216.346311 iter 80 value 142167.965289 iter 90 value 142145.752555 iter 100 value 142126.554108 final value 142126.554108 stopped after 100 iterations INFO [20:17:58.393] [mlr3] Applying learner 'encode.oversample.classif.nnet' on task 'Task' (iter 1/2) # weights: 172 initial value 143365.551642 iter 10 value 142544.191834 iter 20 value 142341.481120 iter 30 value 142114.871995 iter 40 value 142008.496013 iter 50 value 141956.388453 iter 60 value 141933.458301 iter 70 value 141918.382196 iter 80 value 141910.482625 iter 90 value 141902.209974 iter 100 value 141894.153667 final value 141894.153667 stopped after 100 iterations INFO [20:18:48.705] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 2/2) INFO [20:22:38.197] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 1/2)
Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading” Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : “prediction from a rank-deficient fit may be misleading”
INFO [20:26:31.877] [mlr3] Finished benchmark
measures <- list(msr("classif.acc"), msr("classif.precision"), msr("classif.recall") )
performances = bmr$aggregate(measures)
performances[, c("learner_id", "classif.acc","classif.precision", "classif.recall")]
learner_id | classif.acc | classif.precision | classif.recall |
---|---|---|---|
<chr> | <dbl> | <dbl> | <dbl> |
encode.oversample.classif.rpart | 0.6626586 | 0.7860097 | 0.7793343 |
encode.oversample.classif.glmnet | 0.5649917 | 0.7916989 | 0.5994054 |
encode.oversample.classif.log_reg | 0.5562670 | 0.7975630 | 0.5768751 |
encode.oversample.classif.nnet | 0.5132249 | 0.7973210 | 0.5031826 |
encode.oversample.classif.keras | 0.7776616 | 0.7792247 | 0.9971214 |
Best model : Neural Net but recall value near 1. As we have already seen that phenomenon, this means that our model does not distinct women to men. This probably comes from the metric used for optimizing the loss function of the sdg optimizer set inside keras.
One idea could be to change this metrics with class weight.
Let's set our tunning part with Random Forest instead (our second best model)
We will evaluate all hyperparameter configurations using 10-fold CV. We use a fixed train-test split, i.e. the same splits for each evaluation. Otherwise, some evaluation could get unusually “hard” splits, which would make comparisons unfair.
set.seed(8008135)
cv5_instance = rsmp("cv", folds = 5)
# fix the train-test splits using the $instantiate() method
cv5_instance$instantiate(task)
# have a look at the test set instances per fold
cv5_instance$instance
row_id | fold |
---|---|
<int> | <int> |
4 | 1 |
5 | 1 |
10 | 1 |
14 | 1 |
15 | 1 |
23 | 1 |
26 | 1 |
28 | 1 |
29 | 1 |
30 | 1 |
33 | 1 |
34 | 1 |
35 | 1 |
43 | 1 |
52 | 1 |
53 | 1 |
56 | 1 |
60 | 1 |
67 | 1 |
70 | 1 |
71 | 1 |
72 | 1 |
78 | 1 |
88 | 1 |
90 | 1 |
92 | 1 |
96 | 1 |
100 | 1 |
104 | 1 |
116 | 1 |
⋮ | ⋮ |
264716 | 5 |
264745 | 5 |
264748 | 5 |
264756 | 5 |
264760 | 5 |
264764 | 5 |
264783 | 5 |
264785 | 5 |
264786 | 5 |
264788 | 5 |
264793 | 5 |
264794 | 5 |
264798 | 5 |
264799 | 5 |
264808 | 5 |
264814 | 5 |
264817 | 5 |
264828 | 5 |
264831 | 5 |
264833 | 5 |
264834 | 5 |
264836 | 5 |
264839 | 5 |
264844 | 5 |
264847 | 5 |
264849 | 5 |
264856 | 5 |
264857 | 5 |
264859 | 5 |
264868 | 5 |
Set search space with Parameter grid search
library(paradox)
learner_rpart=lrn("classif.rpart")
lrn_up = po("encode",
affect_columns = selector_type("factor")) %>>% po("classbalancing", id = "oversample", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = 206360 / 58520) %>>%
learner_rpart
learner_rpart <- GraphLearner$new(lrn_up)
learner_rpart$predict_type <- "prob"
learner_rpart$param_set
<ParamSetCollection> id class lower upper 1: encode.method ParamFct NA NA 2: encode.affect_columns ParamUty NA NA 3: oversample.ratio ParamDbl 0 Inf 4: oversample.reference ParamFct NA NA 5: oversample.adjust ParamFct NA NA 6: oversample.shuffle ParamLgl NA NA 7: classif.rpart.minsplit ParamInt 1 Inf 8: classif.rpart.minbucket ParamInt 1 Inf 9: classif.rpart.cp ParamDbl 0 1 10: classif.rpart.maxcompete ParamInt 0 Inf 11: classif.rpart.maxsurrogate ParamInt 0 Inf 12: classif.rpart.maxdepth ParamInt 1 30 13: classif.rpart.usesurrogate ParamInt 0 2 14: classif.rpart.surrogatestyle ParamInt 0 1 15: classif.rpart.xval ParamInt 0 Inf 16: classif.rpart.keep_model ParamLgl NA NA levels default value 1: one-hot,treatment,helmert,poly,sum <NoDefault[3]> one-hot 2: <Selector[1]> <Selector[1]> 3: <NoDefault[3]> 3.526316 4: all,major,minor,nonmajor,nonminor,one <NoDefault[3]> minor 5: all,major,minor,nonmajor,nonminor,upsample,... <NoDefault[3]> minor 6: TRUE,FALSE <NoDefault[3]> FALSE 7: 20 8: <NoDefault[3]> 9: 0.01 10: 4 11: 5 12: 30 13: 2 14: 0 15: 10 0 16: TRUE,FALSE FALSE
ps_encode <- ParamSet$new(list(ParamFct$new("encode.method",levels="one-hot")))
ps_class_balance<-ParamSet$new(list(ParamDbl$new("oversample.ratio",lower =3, upper = 4),
ParamFct$new("oversample.reference",levels="minor"),
ParamFct$new("oversample.adjust",levels="minor"),
ParamLgl$new("oversample.shuffle")))
ps_random<-ParamSet$new(list(ParamInt$new("classif.rpart.minsplit", lower = 1, upper = 30),
ParamInt$new("classif.rpart.cp", lower = 0, upper = 1),
ParamInt$new("classif.rpart.maxdepth", lower = 1, upper = 30)))
param_set <- ParamSetCollection$new(list(
ps_encode,
ps_class_balance,
ps_random
))
We choose Precision and Recall- Under the Curve metrics for our GridSearch.
This is a recommanded metric for imbalance dataset : https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
at = AutoTuner$new(learner_rpart, resampling=rsmp("cv", folds = 2), measure = msr("classif.prauc"),
param_set, terminator= trm("evals", n_evals = 36), tuner = tnr("grid_search"))
at
<AutoTuner:encode.oversample.classif.rpart.tuned> * Model: - * Parameters: list() * Packages: stats * Predict Type: prob * Feature types: logical, integer, numeric, character, factor, ordered, POSIXct * Properties: featureless, importance, missings, multiclass, oob_error, selected_features, twoclass, weights
# predict data with tunned parameters
at$train(task)
prediction <- at$predict(task, row_ids = test_set)
# calculate performance
prediction$confusion
INFO [22:15:58.959] [bbotk] Starting to optimize 8 parameter(s) with '<OptimizerGridSearch>' and '<TerminatorEvals>' INFO [22:15:59.155] [bbotk] Evaluating 1 configuration(s) INFO [22:15:59.281] [mlr3] Benchmark with 2 resampling iterations INFO [22:15:59.291] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:16:01.112] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:16:02.967] [mlr3] Finished benchmark INFO [22:16:03.156] [bbotk] Result of batch 1: INFO [22:16:03.159] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:16:03.159] [bbotk] one-hot 3 minor minor INFO [22:16:03.159] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:16:03.159] [bbotk] TRUE 10 1 INFO [22:16:03.159] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:16:03.159] [bbotk] 14 0.7790698 9fcf88b6-5edd-4694-b398-53cffada3aaa INFO [22:16:03.194] [bbotk] Evaluating 1 configuration(s) INFO [22:16:03.332] [mlr3] Benchmark with 2 resampling iterations INFO [22:16:03.343] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:16:05.559] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:16:07.422] [mlr3] Finished benchmark INFO [22:16:07.613] [bbotk] Result of batch 2: INFO [22:16:07.616] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:16:07.616] [bbotk] one-hot 3.333333 minor minor INFO [22:16:07.616] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:16:07.616] [bbotk] TRUE 17 1 INFO [22:16:07.616] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:16:07.616] [bbotk] 20 0.7790698 3af88960-4f17-4c7d-9869-850d6447874a INFO [22:16:07.652] [bbotk] Evaluating 1 configuration(s) INFO [22:16:07.791] [mlr3] Benchmark with 2 resampling iterations INFO [22:16:07.802] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:16:31.410] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:16:55.838] [mlr3] Finished benchmark INFO [22:16:56.242] [bbotk] Result of batch 3: INFO [22:16:56.245] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:16:56.245] [bbotk] one-hot 3.555556 minor minor INFO [22:16:56.245] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:16:56.245] [bbotk] FALSE 20 0 INFO [22:16:56.245] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:16:56.245] [bbotk] 30 0.7771446 19a2343e-020a-43d3-841e-b37c39d9f36b INFO [22:16:56.274] [bbotk] Evaluating 1 configuration(s) INFO [22:16:56.403] [mlr3] Benchmark with 2 resampling iterations INFO [22:16:56.417] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:17:21.896] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:17:47.666] [mlr3] Finished benchmark INFO [22:17:48.197] [bbotk] Result of batch 4: INFO [22:17:48.200] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:17:48.200] [bbotk] one-hot 3 minor minor INFO [22:17:48.200] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:17:48.200] [bbotk] FALSE 4 0 INFO [22:17:48.200] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:17:48.200] [bbotk] 27 0.7790224 13c75be8-3131-48f5-b1be-efb9a0cbb778 INFO [22:17:48.238] [bbotk] Evaluating 1 configuration(s) INFO [22:17:48.377] [mlr3] Benchmark with 2 resampling iterations INFO [22:17:48.385] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:18:07.638] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:18:31.734] [mlr3] Finished benchmark INFO [22:18:32.241] [bbotk] Result of batch 5: INFO [22:18:32.244] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:18:32.244] [bbotk] one-hot 3.777778 minor minor INFO [22:18:32.244] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:18:32.244] [bbotk] TRUE 1 0 INFO [22:18:32.244] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:18:32.244] [bbotk] 24 0.7769085 7e4f1875-1fe2-4b98-ac08-dc84611ec963 INFO [22:18:32.279] [bbotk] Evaluating 1 configuration(s) INFO [22:18:32.395] [mlr3] Benchmark with 2 resampling iterations INFO [22:18:32.404] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:18:34.379] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:18:36.389] [mlr3] Finished benchmark INFO [22:18:36.899] [bbotk] Result of batch 6: INFO [22:18:36.902] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:18:36.902] [bbotk] one-hot 3.222222 minor minor INFO [22:18:36.902] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:18:36.902] [bbotk] FALSE 27 0 INFO [22:18:36.902] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:18:36.902] [bbotk] 1 0.7845742 3bd8ed37-7b2f-4871-a571-e5f04af97d6b INFO [22:18:36.932] [bbotk] Evaluating 1 configuration(s) INFO [22:18:37.071] [mlr3] Benchmark with 2 resampling iterations INFO [22:18:37.081] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:18:50.093] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:19:03.861] [mlr3] Finished benchmark INFO [22:19:04.403] [bbotk] Result of batch 7: INFO [22:19:04.406] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:19:04.406] [bbotk] one-hot 3.888889 minor minor INFO [22:19:04.406] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:19:04.406] [bbotk] TRUE 4 0 INFO [22:19:04.406] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:19:04.406] [bbotk] 17 0.7821595 e0448bbb-1ec2-4405-96d0-7308f18568d7 INFO [22:19:04.436] [bbotk] Evaluating 1 configuration(s) INFO [22:19:04.555] [mlr3] Benchmark with 2 resampling iterations INFO [22:19:04.564] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:19:11.541] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:19:18.562] [mlr3] Finished benchmark INFO [22:19:19.229] [bbotk] Result of batch 8: INFO [22:19:19.233] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:19:19.233] [bbotk] one-hot 3.888889 minor minor INFO [22:19:19.233] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:19:19.233] [bbotk] TRUE 27 0 INFO [22:19:19.233] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:19:19.233] [bbotk] 10 0.788702 1f50c99c-9ad0-4378-b04c-84edb29b3654 INFO [22:19:19.264] [bbotk] Evaluating 1 configuration(s) INFO [22:19:19.382] [mlr3] Benchmark with 2 resampling iterations INFO [22:19:19.392] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:19:21.015] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:19:23.027] [mlr3] Finished benchmark INFO [22:19:23.201] [bbotk] Result of batch 9: INFO [22:19:23.205] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:19:23.205] [bbotk] one-hot 3.444444 minor minor INFO [22:19:23.205] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:19:23.205] [bbotk] FALSE 20 1 INFO [22:19:23.205] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:19:23.205] [bbotk] 7 0.7790698 f34b594b-a82e-42e6-8bf2-c7e043b3a0e3 INFO [22:19:23.242] [bbotk] Evaluating 1 configuration(s) INFO [22:19:23.382] [mlr3] Benchmark with 2 resampling iterations INFO [22:19:23.391] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:19:32.375] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:19:41.636] [mlr3] Finished benchmark INFO [22:19:42.313] [bbotk] Result of batch 10: INFO [22:19:42.316] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:19:42.316] [bbotk] one-hot 3.555556 minor minor INFO [22:19:42.316] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:19:42.316] [bbotk] FALSE 17 0 INFO [22:19:42.316] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:19:42.316] [bbotk] 14 0.7827323 37a33bdc-93ee-4041-bfb7-051fb81348de INFO [22:19:42.347] [bbotk] Evaluating 1 configuration(s) INFO [22:19:42.455] [mlr3] Benchmark with 2 resampling iterations INFO [22:19:42.464] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:19:51.983] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:20:01.421] [mlr3] Finished benchmark INFO [22:20:01.993] [bbotk] Result of batch 11: INFO [22:20:01.996] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:20:01.996] [bbotk] one-hot 3.666667 minor minor INFO [22:20:01.996] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:20:01.996] [bbotk] TRUE 27 0 INFO [22:20:01.996] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:20:01.996] [bbotk] 14 0.7843236 0b6cc28b-968e-464a-a63a-2afca51a405a INFO [22:20:02.030] [bbotk] Evaluating 1 configuration(s) INFO [22:20:02.168] [mlr3] Benchmark with 2 resampling iterations INFO [22:20:02.177] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:20:04.155] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:20:05.843] [mlr3] Finished benchmark INFO [22:20:06.022] [bbotk] Result of batch 12: INFO [22:20:06.025] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:20:06.025] [bbotk] one-hot 3.222222 minor minor INFO [22:20:06.025] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:20:06.025] [bbotk] TRUE 27 1 INFO [22:20:06.025] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:20:06.025] [bbotk] 10 0.7790698 15eea69e-7aaa-43f7-af05-801d080c19ec INFO [22:20:06.057] [bbotk] Evaluating 1 configuration(s) INFO [22:20:06.196] [mlr3] Benchmark with 2 resampling iterations INFO [22:20:06.207] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:20:08.275] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:20:09.984] [mlr3] Finished benchmark INFO [22:20:10.154] [bbotk] Result of batch 13: INFO [22:20:10.157] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:20:10.157] [bbotk] one-hot 3.777778 minor minor INFO [22:20:10.157] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:20:10.157] [bbotk] FALSE 14 1 INFO [22:20:10.157] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:20:10.157] [bbotk] 30 0.7790698 691e0ff2-ced6-41de-b8b3-0959a35c96e5 INFO [22:20:10.188] [bbotk] Evaluating 1 configuration(s) INFO [22:20:10.317] [mlr3] Benchmark with 2 resampling iterations INFO [22:20:10.327] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:20:12.093] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:20:14.160] [mlr3] Finished benchmark INFO [22:20:14.345] [bbotk] Result of batch 14: INFO [22:20:14.348] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:20:14.348] [bbotk] one-hot 3.888889 minor minor INFO [22:20:14.348] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:20:14.348] [bbotk] FALSE 24 1 INFO [22:20:14.348] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:20:14.348] [bbotk] 27 0.7790698 6c70dab7-3b14-49b2-8371-c2f05583bcdd INFO [22:20:14.382] [bbotk] Evaluating 1 configuration(s) INFO [22:20:14.522] [mlr3] Benchmark with 2 resampling iterations INFO [22:20:14.531] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:20:30.863] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:20:45.980] [mlr3] Finished benchmark INFO [22:20:46.488] [bbotk] Result of batch 15: INFO [22:20:46.491] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:20:46.491] [bbotk] one-hot 3.555556 minor minor INFO [22:20:46.491] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:20:46.491] [bbotk] FALSE 4 0 INFO [22:20:46.491] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:20:46.491] [bbotk] 20 0.7802503 a6040979-fbd4-4cb0-a00c-f06044d4f810 INFO [22:20:46.525] [bbotk] Evaluating 1 configuration(s) INFO [22:20:46.639] [mlr3] Benchmark with 2 resampling iterations INFO [22:20:46.648] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:20:55.616] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:04.310] [mlr3] Finished benchmark INFO [22:21:04.852] [bbotk] Result of batch 16: INFO [22:21:04.855] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:04.855] [bbotk] one-hot 3.111111 minor minor INFO [22:21:04.855] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:04.855] [bbotk] FALSE 14 0 INFO [22:21:04.855] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:04.855] [bbotk] 14 0.7841662 54361b5d-5253-42ee-bc1f-54d96a306e73 INFO [22:21:04.883] [bbotk] Evaluating 1 configuration(s) INFO [22:21:05.019] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:05.028] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:06.776] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:08.531] [mlr3] Finished benchmark INFO [22:21:08.724] [bbotk] Result of batch 17: INFO [22:21:08.727] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:08.727] [bbotk] one-hot 3.222222 minor minor INFO [22:21:08.727] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:08.727] [bbotk] TRUE 10 1 INFO [22:21:08.727] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:08.727] [bbotk] 14 0.7790698 85f11f1b-ce98-4e55-baf3-8b7939bda0f5 INFO [22:21:08.755] [bbotk] Evaluating 1 configuration(s) INFO [22:21:08.866] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:08.874] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:11.029] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:13.302] [mlr3] Finished benchmark INFO [22:21:13.479] [bbotk] Result of batch 18: INFO [22:21:13.481] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:13.481] [bbotk] one-hot 4 minor minor INFO [22:21:13.481] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:13.481] [bbotk] TRUE 27 0 INFO [22:21:13.481] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:13.481] [bbotk] 1 0.7790698 0467aad8-914c-4e65-ad8b-797a56415e39 INFO [22:21:13.514] [bbotk] Evaluating 1 configuration(s) INFO [22:21:13.633] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:13.643] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:15.674] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:17.639] [mlr3] Finished benchmark INFO [22:21:17.797] [bbotk] Result of batch 19: INFO [22:21:17.800] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:17.800] [bbotk] one-hot 3.333333 minor minor INFO [22:21:17.800] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:17.800] [bbotk] FALSE 7 1 INFO [22:21:17.800] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:17.800] [bbotk] 24 0.7790698 1c19bd98-b96b-4a60-bcd5-0c50abde7124 INFO [22:21:17.828] [bbotk] Evaluating 1 configuration(s) INFO [22:21:17.954] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:17.964] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:19.686] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:21.352] [mlr3] Finished benchmark INFO [22:21:21.527] [bbotk] Result of batch 20: INFO [22:21:21.529] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:21.529] [bbotk] one-hot 3.555556 minor minor INFO [22:21:21.529] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:21.529] [bbotk] FALSE 20 1 INFO [22:21:21.529] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:21.529] [bbotk] 30 0.7790698 8487a245-86c4-42da-9aea-e75e8a109a72 INFO [22:21:21.558] [bbotk] Evaluating 1 configuration(s) INFO [22:21:21.687] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:21.696] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:26.646] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:31.513] [mlr3] Finished benchmark INFO [22:21:32.273] [bbotk] Result of batch 21: INFO [22:21:32.275] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:32.275] [bbotk] one-hot 3.222222 minor minor INFO [22:21:32.275] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:32.275] [bbotk] TRUE 24 0 INFO [22:21:32.275] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:32.275] [bbotk] 7 0.7908619 ed62d8c2-2f31-43bd-91af-bb95769c96dc INFO [22:21:32.304] [bbotk] Evaluating 1 configuration(s) INFO [22:21:32.441] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:32.449] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:34.669] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:36.807] [mlr3] Finished benchmark INFO [22:21:36.982] [bbotk] Result of batch 22: INFO [22:21:36.985] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:36.985] [bbotk] one-hot 3.777778 minor minor INFO [22:21:36.985] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:36.985] [bbotk] TRUE 1 0 INFO [22:21:36.985] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:36.985] [bbotk] 1 0.7790698 776fa70b-b0e1-4ed1-9006-4b62fafe5503 INFO [22:21:37.017] [bbotk] Evaluating 1 configuration(s) INFO [22:21:37.155] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:37.165] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:42.640] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:47.603] [mlr3] Finished benchmark INFO [22:21:48.462] [bbotk] Result of batch 23: INFO [22:21:48.464] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:48.464] [bbotk] one-hot 3.555556 minor minor INFO [22:21:48.464] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:48.464] [bbotk] TRUE 7 0 INFO [22:21:48.464] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:48.464] [bbotk] 7 0.7903251 e2770439-1e2c-48b0-a1db-493889a3d902 INFO [22:21:48.520] [bbotk] Evaluating 1 configuration(s) INFO [22:21:48.640] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:48.647] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:21:53.506] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:21:58.374] [mlr3] Finished benchmark INFO [22:21:59.149] [bbotk] Result of batch 24: INFO [22:21:59.152] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:21:59.152] [bbotk] one-hot 3.333333 minor minor INFO [22:21:59.152] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:21:59.152] [bbotk] FALSE 24 0 INFO [22:21:59.152] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:21:59.152] [bbotk] 7 0.7904867 2c1b1933-ff2a-4119-9e01-525a00e84809 INFO [22:21:59.183] [bbotk] Evaluating 1 configuration(s) INFO [22:21:59.332] [mlr3] Benchmark with 2 resampling iterations INFO [22:21:59.340] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:22:03.167] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:22:06.599] [mlr3] Finished benchmark INFO [22:22:07.683] [bbotk] Result of batch 25: INFO [22:22:07.686] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:22:07.686] [bbotk] one-hot 3.222222 minor minor INFO [22:22:07.686] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:22:07.686] [bbotk] TRUE 17 0 INFO [22:22:07.686] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:22:07.686] [bbotk] 4 0.7896721 bbdc0153-e338-4727-8e65-d789a3cd95aa INFO [22:22:07.718] [bbotk] Evaluating 1 configuration(s) INFO [22:22:07.863] [mlr3] Benchmark with 2 resampling iterations INFO [22:22:07.873] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:22:09.815] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:22:11.820] [mlr3] Finished benchmark INFO [22:22:11.985] [bbotk] Result of batch 26: INFO [22:22:11.988] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:22:11.988] [bbotk] one-hot 3.333333 minor minor INFO [22:22:11.988] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:22:11.988] [bbotk] TRUE 14 1 INFO [22:22:11.988] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:22:11.988] [bbotk] 1 0.7790698 8e5f5503-46bc-40a2-976f-a4d66909268d INFO [22:22:12.022] [bbotk] Evaluating 1 configuration(s) INFO [22:22:12.164] [mlr3] Benchmark with 2 resampling iterations INFO [22:22:12.172] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:22:13.889] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:22:15.569] [mlr3] Finished benchmark INFO [22:22:15.733] [bbotk] Result of batch 27: INFO [22:22:15.736] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:22:15.736] [bbotk] one-hot 3.444444 minor minor INFO [22:22:15.736] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:22:15.736] [bbotk] TRUE 14 1 INFO [22:22:15.736] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:22:15.736] [bbotk] 30 0.7790698 61ad9872-32be-4bde-bf13-0ea16b783ffc INFO [22:22:15.764] [bbotk] Evaluating 1 configuration(s) INFO [22:22:15.894] [mlr3] Benchmark with 2 resampling iterations INFO [22:22:15.903] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:22:17.974] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:22:19.685] [mlr3] Finished benchmark INFO [22:22:19.900] [bbotk] Result of batch 28: INFO [22:22:19.903] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:22:19.903] [bbotk] one-hot 3.111111 minor minor INFO [22:22:19.903] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:22:19.903] [bbotk] TRUE 4 1 INFO [22:22:19.903] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:22:19.903] [bbotk] 7 0.7790698 f9566305-3401-4548-b9b2-4684ad272edb INFO [22:22:19.937] [bbotk] Evaluating 1 configuration(s) INFO [22:22:20.061] [mlr3] Benchmark with 2 resampling iterations INFO [22:22:20.071] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:22:21.762] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:22:23.443] [mlr3] Finished benchmark INFO [22:22:23.621] [bbotk] Result of batch 29: INFO [22:22:23.625] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:22:23.625] [bbotk] one-hot 3.333333 minor minor INFO [22:22:23.625] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:22:23.625] [bbotk] FALSE 10 1 INFO [22:22:23.625] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:22:23.625] [bbotk] 4 0.7790698 588e83a8-c1a0-433a-a56c-d54d764c98be INFO [22:22:23.664] [bbotk] Evaluating 1 configuration(s) INFO [22:22:23.810] [mlr3] Benchmark with 2 resampling iterations INFO [22:22:23.821] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:22:41.803] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:01.074] [mlr3] Finished benchmark INFO [22:23:01.540] [bbotk] Result of batch 30: INFO [22:23:01.544] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:01.544] [bbotk] one-hot 3.111111 minor minor INFO [22:23:01.544] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:01.544] [bbotk] FALSE 7 0 INFO [22:23:01.544] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:01.544] [bbotk] 24 0.7789343 0f4af608-fdce-460f-b17b-69c0e430995a INFO [22:23:01.576] [bbotk] Evaluating 1 configuration(s) INFO [22:23:01.686] [mlr3] Benchmark with 2 resampling iterations INFO [22:23:01.694] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:12.959] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:23:24.292] [mlr3] Finished benchmark INFO [22:23:24.902] [bbotk] Result of batch 31: INFO [22:23:24.905] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:24.905] [bbotk] one-hot 3.555556 minor minor INFO [22:23:24.905] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:24.905] [bbotk] FALSE 24 0 INFO [22:23:24.905] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:24.905] [bbotk] 17 0.7813922 c1008060-ae33-4b82-91a1-a02c43993106 INFO [22:23:24.954] [bbotk] Evaluating 1 configuration(s) INFO [22:23:25.072] [mlr3] Benchmark with 2 resampling iterations INFO [22:23:25.082] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:26.838] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:23:28.532] [mlr3] Finished benchmark INFO [22:23:28.691] [bbotk] Result of batch 32: INFO [22:23:28.694] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:28.694] [bbotk] one-hot 3.444444 minor minor INFO [22:23:28.694] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:28.694] [bbotk] TRUE 24 1 INFO [22:23:28.694] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:28.694] [bbotk] 30 0.7790698 9d1771fd-5b71-42a3-a2c3-f66d48c19a8f INFO [22:23:28.724] [bbotk] Evaluating 1 configuration(s) INFO [22:23:28.831] [mlr3] Benchmark with 2 resampling iterations INFO [22:23:28.839] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:23:32.465] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:36.092] [mlr3] Finished benchmark INFO [22:23:37.444] [bbotk] Result of batch 33: INFO [22:23:37.447] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:37.447] [bbotk] one-hot 3.888889 minor minor INFO [22:23:37.447] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:37.447] [bbotk] TRUE 1 0 INFO [22:23:37.447] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:37.447] [bbotk] 4 0.7899352 283641a4-e032-4d72-b42f-4c81f51ff456 INFO [22:23:37.502] [bbotk] Evaluating 1 configuration(s) INFO [22:23:37.622] [mlr3] Benchmark with 2 resampling iterations INFO [22:23:37.632] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:39.720] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:23:41.760] [mlr3] Finished benchmark INFO [22:23:41.914] [bbotk] Result of batch 34: INFO [22:23:41.917] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:41.917] [bbotk] one-hot 3.666667 minor minor INFO [22:23:41.917] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:41.917] [bbotk] TRUE 20 1 INFO [22:23:41.917] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:41.917] [bbotk] 30 0.7790698 79cea503-00d3-4435-b463-4781c95d4709 INFO [22:23:41.949] [bbotk] Evaluating 1 configuration(s) INFO [22:23:42.092] [mlr3] Benchmark with 2 resampling iterations INFO [22:23:42.101] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:44.174] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:23:46.262] [mlr3] Finished benchmark INFO [22:23:46.797] [bbotk] Result of batch 35: INFO [22:23:46.800] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:46.800] [bbotk] one-hot 3.444444 minor minor INFO [22:23:46.800] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:46.800] [bbotk] TRUE 24 0 INFO [22:23:46.800] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:46.800] [bbotk] 1 0.7846454 946220a1-ea88-44eb-962a-efa906b99576 INFO [22:23:46.831] [bbotk] Evaluating 1 configuration(s) INFO [22:23:46.959] [mlr3] Benchmark with 2 resampling iterations INFO [22:23:46.969] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:23:49.039] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:23:51.199] [mlr3] Finished benchmark INFO [22:23:52.099] [bbotk] Result of batch 36: INFO [22:23:52.102] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:52.102] [bbotk] one-hot 3.333333 minor minor INFO [22:23:52.102] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:52.102] [bbotk] FALSE 14 0 INFO [22:23:52.102] [bbotk] classif.rpart.maxdepth classif.prauc uhash INFO [22:23:52.102] [bbotk] 1 0.7846431 5d202a1f-a3ef-404f-89cc-fbdbfc3b1d61 INFO [22:23:52.213] [bbotk] Finished optimizing after 36 evaluation(s) INFO [22:23:52.215] [bbotk] Result: INFO [22:23:52.217] [bbotk] encode.method oversample.ratio oversample.reference oversample.adjust INFO [22:23:52.217] [bbotk] one-hot 3.222222 minor minor INFO [22:23:52.217] [bbotk] oversample.shuffle classif.rpart.minsplit classif.rpart.cp INFO [22:23:52.217] [bbotk] TRUE 24 0 INFO [22:23:52.217] [bbotk] classif.rpart.maxdepth learner_param_vals x_domain classif.prauc INFO [22:23:52.217] [bbotk] 7 <list[10]> <list[8]> 0.7908619
truth response 0 1 0 35800 9676 1 5401 2099
We can now use the learner like any other learner, calling the train() and predict() method.
This time however, we pass it to benchmark() to compare the tuner to a classification tree without tuning.
This way, the AutoTuner will do its resampling for tuning on the training set of the respective split of the outer resampling.
The learner then undertakes predictions using the test set of the outer resampling. This yields unbiased performance measures, as the observations in the test set have not been used during tuning or fitting of the respective learner. This is called nested resampling.
grid = benchmark_grid(
task = task,
learner = list(at, learner_rpart,learner_keras_nn),
resampling = rsmp("cv", folds = 5)
)
# avoid console output from mlr3tuning
logger = lgr::get_logger("bbotk")
logger$set_threshold("warn")
bmr = benchmark(grid)
bmr$aggregate(msrs(c("classif.ce", "time_train","classif.precision","classif.recall")))
INFO [22:24:10.452] [mlr3] Benchmark with 15 resampling iterations INFO [22:24:10.464] [mlr3] Applying learner 'encode.oversample.classif.rpart.tuned' on task 'Task' (iter 2/5) INFO [22:24:10.927] [mlr3] Benchmark with 2 resampling iterations INFO [22:24:10.936] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:24:13.824] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:24:16.685] [mlr3] Finished benchmark INFO [22:24:17.952] [mlr3] Benchmark with 2 resampling iterations INFO [22:24:17.960] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:24:36.510] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:24:53.670] [mlr3] Finished benchmark INFO [22:24:54.103] [mlr3] Benchmark with 2 resampling iterations INFO [22:24:54.113] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:25:03.749] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:25:13.936] [mlr3] Finished benchmark INFO [22:25:14.488] [mlr3] Benchmark with 2 resampling iterations INFO [22:25:14.497] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:25:24.496] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:25:34.093] [mlr3] Finished benchmark INFO [22:25:34.624] [mlr3] Benchmark with 2 resampling iterations INFO [22:25:34.638] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:25:40.637] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:25:46.472] [mlr3] Finished benchmark INFO [22:25:47.081] [mlr3] Benchmark with 2 resampling iterations INFO [22:25:47.091] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:25:48.709] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:25:50.332] [mlr3] Finished benchmark INFO [22:25:50.628] [mlr3] Benchmark with 2 resampling iterations INFO [22:25:50.638] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:26:00.013] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:09.706] [mlr3] Finished benchmark INFO [22:26:10.247] [mlr3] Benchmark with 2 resampling iterations INFO [22:26:10.256] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:26:11.860] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:13.512] [mlr3] Finished benchmark INFO [22:26:13.803] [mlr3] Benchmark with 2 resampling iterations INFO [22:26:13.811] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:26:16.890] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:20.012] [mlr3] Finished benchmark INFO [22:26:20.854] [mlr3] Benchmark with 2 resampling iterations INFO [22:26:20.863] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:22.468] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:26:24.171] [mlr3] Finished benchmark INFO [22:26:24.485] [mlr3] Benchmark with 2 resampling iterations INFO [22:26:24.495] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:33.775] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:26:42.642] [mlr3] Finished benchmark INFO [22:26:43.188] [mlr3] Benchmark with 2 resampling iterations INFO [22:26:43.197] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:26:44.766] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:46.716] [mlr3] Finished benchmark INFO [22:26:47.053] [mlr3] Benchmark with 2 resampling iterations INFO [22:26:47.061] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:26:54.718] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:27:02.881] [mlr3] Finished benchmark INFO [22:27:03.463] [mlr3] Benchmark with 2 resampling iterations INFO [22:27:03.472] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:27:05.219] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:27:06.692] [mlr3] Finished benchmark INFO [22:27:06.996] [mlr3] Benchmark with 2 resampling iterations INFO [22:27:07.006] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:27:12.722] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:27:18.411] [mlr3] Finished benchmark INFO [22:27:19.060] [mlr3] Benchmark with 2 resampling iterations INFO [22:27:19.069] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:27:20.517] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:27:22.028] [mlr3] Finished benchmark INFO [22:27:22.326] [mlr3] Benchmark with 2 resampling iterations INFO [22:27:22.336] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:27:26.532] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:27:30.591] [mlr3] Finished benchmark INFO [22:27:31.344] [mlr3] Benchmark with 2 resampling iterations INFO [22:27:31.354] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:27:41.773] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:27:52.384] [mlr3] Finished benchmark INFO [22:27:52.916] [mlr3] Benchmark with 2 resampling iterations INFO [22:27:52.925] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:28:07.469] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:28:21.891] [mlr3] Finished benchmark INFO [22:28:22.357] [mlr3] Benchmark with 2 resampling iterations INFO [22:28:22.365] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:28:24.249] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:28:25.823] [mlr3] Finished benchmark INFO [22:28:26.133] [mlr3] Benchmark with 2 resampling iterations INFO [22:28:26.143] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:28:27.644] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:28:29.446] [mlr3] Finished benchmark INFO [22:28:29.767] [mlr3] Benchmark with 2 resampling iterations INFO [22:28:29.777] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:28:34.979] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:28:40.545] [mlr3] Finished benchmark INFO [22:28:41.162] [mlr3] Benchmark with 2 resampling iterations INFO [22:28:41.172] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:28:49.076] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:28:57.226] [mlr3] Finished benchmark INFO [22:28:57.751] [mlr3] Benchmark with 2 resampling iterations INFO [22:28:57.759] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:28:59.348] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:29:00.873] [mlr3] Finished benchmark INFO [22:29:01.175] [mlr3] Benchmark with 2 resampling iterations INFO [22:29:01.187] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:29:12.398] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:29:23.575] [mlr3] Finished benchmark INFO [22:29:24.120] [mlr3] Benchmark with 2 resampling iterations INFO [22:29:24.129] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:29:25.736] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:29:27.270] [mlr3] Finished benchmark INFO [22:29:27.597] [mlr3] Benchmark with 2 resampling iterations INFO [22:29:27.606] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:29:30.643] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:29:34.006] [mlr3] Finished benchmark INFO [22:29:34.897] [mlr3] Benchmark with 2 resampling iterations INFO [22:29:34.906] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:29:36.521] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:29:38.172] [mlr3] Finished benchmark INFO [22:29:38.463] [mlr3] Benchmark with 2 resampling iterations INFO [22:29:38.473] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:29:42.503] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:29:46.587] [mlr3] Finished benchmark INFO [22:29:47.296] [mlr3] Benchmark with 2 resampling iterations INFO [22:29:47.305] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:01.180] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:15.217] [mlr3] Finished benchmark INFO [22:30:15.700] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:15.708] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:17.311] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:18.936] [mlr3] Finished benchmark INFO [22:30:19.249] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:19.261] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:21.097] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:22.768] [mlr3] Finished benchmark INFO [22:30:23.063] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:23.075] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:25.028] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:26.728] [mlr3] Finished benchmark INFO [22:30:27.017] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:27.027] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:28.657] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:30.282] [mlr3] Finished benchmark INFO [22:30:30.581] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:30.594] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:32.494] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:34.476] [mlr3] Finished benchmark INFO [22:30:34.773] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:34.783] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:30:36.383] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:30:37.981] [mlr3] Finished benchmark INFO [22:30:44.193] [mlr3] Applying learner 'encode.oversample.classif.rpart.tuned' on task 'Task' (iter 1/5) INFO [22:30:44.662] [mlr3] Benchmark with 2 resampling iterations INFO [22:30:44.672] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:31:02.471] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:31:18.983] [mlr3] Finished benchmark INFO [22:31:19.495] [mlr3] Benchmark with 2 resampling iterations INFO [22:31:19.503] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:31:37.925] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:31:53.611] [mlr3] Finished benchmark INFO [22:31:54.110] [mlr3] Benchmark with 2 resampling iterations INFO [22:31:54.120] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:31:55.568] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:31:57.090] [mlr3] Finished benchmark INFO [22:31:57.412] [mlr3] Benchmark with 2 resampling iterations INFO [22:31:57.421] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:32:02.403] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:32:07.678] [mlr3] Finished benchmark INFO [22:32:08.522] [mlr3] Benchmark with 2 resampling iterations INFO [22:32:08.532] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:32:10.447] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:32:12.370] [mlr3] Finished benchmark INFO [22:32:12.961] [mlr3] Benchmark with 2 resampling iterations INFO [22:32:12.970] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:32:16.051] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:32:19.130] [mlr3] Finished benchmark INFO [22:32:20.153] [mlr3] Benchmark with 2 resampling iterations INFO [22:32:20.163] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:32:25.520] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:32:30.673] [mlr3] Finished benchmark INFO [22:32:31.546] [mlr3] Benchmark with 2 resampling iterations INFO [22:32:31.560] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:32:33.389] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:32:35.337] [mlr3] Finished benchmark INFO [22:32:35.940] [mlr3] Benchmark with 2 resampling iterations INFO [22:32:35.949] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:32:51.317] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:33:07.994] [mlr3] Finished benchmark INFO [22:33:08.539] [mlr3] Benchmark with 2 resampling iterations INFO [22:33:08.548] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:33:12.683] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:33:17.019] [mlr3] Finished benchmark INFO [22:33:17.956] [mlr3] Benchmark with 2 resampling iterations INFO [22:33:17.965] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:33:19.392] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:33:20.851] [mlr3] Finished benchmark INFO [22:33:21.191] [mlr3] Benchmark with 2 resampling iterations INFO [22:33:21.201] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:33:22.805] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:33:24.401] [mlr3] Finished benchmark INFO [22:33:24.757] [mlr3] Benchmark with 2 resampling iterations INFO [22:33:24.766] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:33:45.253] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:03.724] [mlr3] Finished benchmark INFO [22:34:04.314] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:04.323] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:05.842] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:07.406] [mlr3] Finished benchmark INFO [22:34:07.780] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:07.789] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:09.282] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:10.846] [mlr3] Finished benchmark INFO [22:34:11.191] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:11.201] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:12.779] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:14.347] [mlr3] Finished benchmark INFO [22:34:14.707] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:14.716] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:16.255] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:17.802] [mlr3] Finished benchmark INFO [22:34:18.125] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:18.134] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:21.210] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:24.367] [mlr3] Finished benchmark INFO [22:34:25.377] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:25.386] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:36.004] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:45.722] [mlr3] Finished benchmark INFO [22:34:46.368] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:46.378] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:34:48.007] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:49.691] [mlr3] Finished benchmark INFO [22:34:50.089] [mlr3] Benchmark with 2 resampling iterations INFO [22:34:50.106] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:34:58.800] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:35:08.640] [mlr3] Finished benchmark INFO [22:35:09.252] [mlr3] Benchmark with 2 resampling iterations INFO [22:35:09.261] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:35:16.376] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:35:23.378] [mlr3] Finished benchmark INFO [22:35:24.002] [mlr3] Benchmark with 2 resampling iterations INFO [22:35:24.011] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:35:26.789] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:35:29.621] [mlr3] Finished benchmark INFO [22:35:30.684] [mlr3] Benchmark with 2 resampling iterations INFO [22:35:30.693] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:35:38.083] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:35:45.795] [mlr3] Finished benchmark INFO [22:35:46.526] [mlr3] Benchmark with 2 resampling iterations INFO [22:35:46.536] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:35:48.068] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:35:49.587] [mlr3] Finished benchmark INFO [22:35:49.909] [mlr3] Benchmark with 2 resampling iterations INFO [22:35:49.920] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:35:51.480] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:35:53.032] [mlr3] Finished benchmark INFO [22:35:53.385] [mlr3] Benchmark with 2 resampling iterations INFO [22:35:53.395] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:36:13.451] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:36:35.282] [mlr3] Finished benchmark INFO [22:36:35.746] [mlr3] Benchmark with 2 resampling iterations INFO [22:36:35.754] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:36:37.216] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:36:38.713] [mlr3] Finished benchmark INFO [22:36:39.030] [mlr3] Benchmark with 2 resampling iterations INFO [22:36:39.038] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:36:44.720] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:36:50.555] [mlr3] Finished benchmark INFO [22:36:51.311] [mlr3] Benchmark with 2 resampling iterations INFO [22:36:51.320] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:36:52.857] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:36:54.379] [mlr3] Finished benchmark INFO [22:36:54.739] [mlr3] Benchmark with 2 resampling iterations INFO [22:36:54.747] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:36:56.144] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:36:57.626] [mlr3] Finished benchmark INFO [22:36:57.973] [mlr3] Benchmark with 2 resampling iterations INFO [22:36:57.992] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:37:06.034] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:37:13.488] [mlr3] Finished benchmark INFO [22:37:14.141] [mlr3] Benchmark with 2 resampling iterations INFO [22:37:14.151] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:37:23.197] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:37:31.863] [mlr3] Finished benchmark INFO [22:37:32.504] [mlr3] Benchmark with 2 resampling iterations INFO [22:37:32.514] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:37:38.129] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:37:43.274] [mlr3] Finished benchmark INFO [22:37:44.037] [mlr3] Benchmark with 2 resampling iterations INFO [22:37:44.046] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:38:02.176] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:38:19.735] [mlr3] Finished benchmark INFO [22:38:20.311] [mlr3] Benchmark with 2 resampling iterations INFO [22:38:20.325] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [22:38:21.837] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [22:38:23.396] [mlr3] Finished benchmark INFO [22:38:29.231] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 5/5) INFO [22:48:18.425] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 2/5) INFO [22:58:04.491] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 4/5) INFO [23:07:49.792] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/5) INFO [23:08:01.490] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 4/5) INFO [23:08:15.167] [mlr3] Applying learner 'encode.oversample.classif.rpart.tuned' on task 'Task' (iter 4/5) INFO [23:08:15.643] [mlr3] Benchmark with 2 resampling iterations INFO [23:08:15.655] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:08:17.251] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:08:18.798] [mlr3] Finished benchmark INFO [23:08:19.121] [mlr3] Benchmark with 2 resampling iterations INFO [23:08:19.130] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:08:20.652] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:08:22.209] [mlr3] Finished benchmark INFO [23:08:22.521] [mlr3] Benchmark with 2 resampling iterations INFO [23:08:22.532] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:08:24.001] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:08:25.489] [mlr3] Finished benchmark INFO [23:08:25.794] [mlr3] Benchmark with 2 resampling iterations INFO [23:08:25.803] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:08:33.858] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:08:41.518] [mlr3] Finished benchmark INFO [23:08:42.197] [mlr3] Benchmark with 2 resampling iterations INFO [23:08:42.207] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:08:57.274] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:09:10.473] [mlr3] Finished benchmark INFO [23:09:11.031] [mlr3] Benchmark with 2 resampling iterations INFO [23:09:11.040] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:09:16.755] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:09:21.977] [mlr3] Finished benchmark INFO [23:09:22.704] [mlr3] Benchmark with 2 resampling iterations INFO [23:09:22.714] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:09:32.481] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:09:41.174] [mlr3] Finished benchmark INFO [23:09:41.849] [mlr3] Benchmark with 2 resampling iterations INFO [23:09:41.859] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:09:57.392] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:10:11.058] [mlr3] Finished benchmark INFO [23:10:11.653] [mlr3] Benchmark with 2 resampling iterations INFO [23:10:11.663] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:10:13.530] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:10:15.495] [mlr3] Finished benchmark INFO [23:10:16.197] [mlr3] Benchmark with 2 resampling iterations INFO [23:10:16.221] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:10:17.762] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:10:19.294] [mlr3] Finished benchmark INFO [23:10:19.603] [mlr3] Benchmark with 2 resampling iterations INFO [23:10:19.610] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:10:23.937] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:10:28.126] [mlr3] Finished benchmark INFO [23:10:28.929] [mlr3] Benchmark with 2 resampling iterations INFO [23:10:28.938] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:10:33.159] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:10:37.321] [mlr3] Finished benchmark INFO [23:10:38.180] [mlr3] Benchmark with 2 resampling iterations INFO [23:10:38.188] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:10:39.664] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:10:41.173] [mlr3] Finished benchmark INFO [23:10:41.506] [mlr3] Benchmark with 2 resampling iterations INFO [23:10:41.515] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:10:58.459] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:11:13.372] [mlr3] Finished benchmark INFO [23:11:13.884] [mlr3] Benchmark with 2 resampling iterations INFO [23:11:13.894] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:11:15.423] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:11:16.937] [mlr3] Finished benchmark INFO [23:11:17.272] [mlr3] Benchmark with 2 resampling iterations INFO [23:11:17.283] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:11:18.764] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:11:20.307] [mlr3] Finished benchmark INFO [23:11:20.630] [mlr3] Benchmark with 2 resampling iterations INFO [23:11:20.638] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:11:47.790] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:12:08.563] [mlr3] Finished benchmark INFO [23:12:09.156] [mlr3] Benchmark with 2 resampling iterations INFO [23:12:09.165] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:12:24.558] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:12:42.169] [mlr3] Finished benchmark INFO [23:12:42.698] [mlr3] Benchmark with 2 resampling iterations INFO [23:12:42.708] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:12:49.926] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:12:57.668] [mlr3] Finished benchmark INFO [23:12:58.366] [mlr3] Benchmark with 2 resampling iterations INFO [23:12:58.376] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:12:59.887] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:13:01.498] [mlr3] Finished benchmark INFO [23:13:01.879] [mlr3] Benchmark with 2 resampling iterations INFO [23:13:01.892] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:13:16.468] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:13:32.507] [mlr3] Finished benchmark INFO [23:13:33.089] [mlr3] Benchmark with 2 resampling iterations INFO [23:13:33.102] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:13:38.801] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:13:44.194] [mlr3] Finished benchmark INFO [23:13:44.915] [mlr3] Benchmark with 2 resampling iterations INFO [23:13:44.925] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:13:46.535] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:13:48.176] [mlr3] Finished benchmark INFO [23:13:48.516] [mlr3] Benchmark with 2 resampling iterations INFO [23:13:48.525] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:13:51.551] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:13:54.647] [mlr3] Finished benchmark INFO [23:13:56.012] [mlr3] Benchmark with 2 resampling iterations INFO [23:13:56.022] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:03.588] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:11.623] [mlr3] Finished benchmark INFO [23:14:12.408] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:12.417] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:15.562] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:18.625] [mlr3] Finished benchmark INFO [23:14:19.714] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:19.724] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:21.617] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:23.580] [mlr3] Finished benchmark INFO [23:14:24.540] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:24.551] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:26.189] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:27.805] [mlr3] Finished benchmark INFO [23:14:28.175] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:28.192] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:29.766] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:31.417] [mlr3] Finished benchmark INFO [23:14:31.775] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:31.788] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:33.476] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:35.155] [mlr3] Finished benchmark INFO [23:14:35.904] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:35.912] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:41.568] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:47.559] [mlr3] Finished benchmark INFO [23:14:48.223] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:48.231] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:49.710] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:51.250] [mlr3] Finished benchmark INFO [23:14:51.551] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:51.561] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:53.146] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:54.649] [mlr3] Finished benchmark INFO [23:14:54.974] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:54.983] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:14:56.463] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:57.975] [mlr3] Finished benchmark INFO [23:14:58.317] [mlr3] Benchmark with 2 resampling iterations INFO [23:14:58.327] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:14:59.923] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:15:01.533] [mlr3] Finished benchmark INFO [23:15:01.845] [mlr3] Benchmark with 2 resampling iterations INFO [23:15:01.855] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:15:03.388] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:15:04.975] [mlr3] Finished benchmark INFO [23:15:10.655] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 3/5) INFO [23:24:56.611] [mlr3] Applying learner 'encode.oversample.classif.rpart.tuned' on task 'Task' (iter 3/5) INFO [23:24:57.130] [mlr3] Benchmark with 2 resampling iterations INFO [23:24:57.140] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:25:00.100] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:25:02.928] [mlr3] Finished benchmark INFO [23:25:03.779] [mlr3] Benchmark with 2 resampling iterations INFO [23:25:03.791] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:25:20.156] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:25:37.852] [mlr3] Finished benchmark INFO [23:25:38.292] [mlr3] Benchmark with 2 resampling iterations INFO [23:25:38.302] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:25:39.841] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:25:41.486] [mlr3] Finished benchmark INFO [23:25:41.792] [mlr3] Benchmark with 2 resampling iterations INFO [23:25:41.800] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:25:43.477] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:25:45.022] [mlr3] Finished benchmark INFO [23:25:45.352] [mlr3] Benchmark with 2 resampling iterations INFO [23:25:45.363] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:25:52.566] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:25:59.856] [mlr3] Finished benchmark INFO [23:26:00.489] [mlr3] Benchmark with 2 resampling iterations INFO [23:26:00.502] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:26:02.019] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:26:03.526] [mlr3] Finished benchmark INFO [23:26:03.831] [mlr3] Benchmark with 2 resampling iterations INFO [23:26:03.840] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:26:05.412] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:26:06.954] [mlr3] Finished benchmark INFO [23:26:07.282] [mlr3] Benchmark with 2 resampling iterations INFO [23:26:07.292] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:26:23.565] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:26:40.524] [mlr3] Finished benchmark INFO [23:26:41.301] [mlr3] Benchmark with 2 resampling iterations INFO [23:26:41.309] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:26:49.053] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:26:56.693] [mlr3] Finished benchmark INFO [23:26:57.263] [mlr3] Benchmark with 2 resampling iterations INFO [23:26:57.275] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:26:58.823] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:00.332] [mlr3] Finished benchmark INFO [23:27:00.630] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:00.640] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:02.114] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:03.577] [mlr3] Finished benchmark INFO [23:27:03.888] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:03.898] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:05.355] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:06.800] [mlr3] Finished benchmark INFO [23:27:07.119] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:07.128] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:11.316] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:15.675] [mlr3] Finished benchmark INFO [23:27:16.397] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:16.408] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:17.914] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:19.335] [mlr3] Finished benchmark INFO [23:27:19.657] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:19.666] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:21.238] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:22.844] [mlr3] Finished benchmark INFO [23:27:23.167] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:23.176] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:24.702] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:26.210] [mlr3] Finished benchmark INFO [23:27:26.511] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:26.520] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:28.121] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:29.664] [mlr3] Finished benchmark INFO [23:27:29.989] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:29.998] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:31.592] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:33.286] [mlr3] Finished benchmark INFO [23:27:33.630] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:33.639] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:35.488] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:27:37.338] [mlr3] Finished benchmark INFO [23:27:37.862] [mlr3] Benchmark with 2 resampling iterations INFO [23:27:37.872] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:27:57.572] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:28:16.732] [mlr3] Finished benchmark INFO [23:28:17.190] [mlr3] Benchmark with 2 resampling iterations INFO [23:28:17.199] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:28:29.060] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:28:40.182] [mlr3] Finished benchmark INFO [23:28:40.738] [mlr3] Benchmark with 2 resampling iterations INFO [23:28:40.746] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:28:51.770] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:29:03.146] [mlr3] Finished benchmark INFO [23:29:03.710] [mlr3] Benchmark with 2 resampling iterations INFO [23:29:03.721] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:29:05.387] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:29:06.967] [mlr3] Finished benchmark INFO [23:29:07.328] [mlr3] Benchmark with 2 resampling iterations INFO [23:29:07.338] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:29:15.106] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:29:23.235] [mlr3] Finished benchmark INFO [23:29:23.853] [mlr3] Benchmark with 2 resampling iterations INFO [23:29:23.864] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:29:29.702] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:29:35.625] [mlr3] Finished benchmark INFO [23:29:36.304] [mlr3] Benchmark with 2 resampling iterations INFO [23:29:36.318] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:29:37.788] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:29:39.289] [mlr3] Finished benchmark INFO [23:29:39.631] [mlr3] Benchmark with 2 resampling iterations INFO [23:29:39.642] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:29:42.713] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:29:45.612] [mlr3] Finished benchmark INFO [23:29:46.555] [mlr3] Benchmark with 2 resampling iterations INFO [23:29:46.563] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:30:02.557] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:30:17.817] [mlr3] Finished benchmark INFO [23:30:18.258] [mlr3] Benchmark with 2 resampling iterations INFO [23:30:18.267] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:30:32.876] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:30:48.220] [mlr3] Finished benchmark INFO [23:30:48.653] [mlr3] Benchmark with 2 resampling iterations INFO [23:30:48.661] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:30:50.136] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:30:51.656] [mlr3] Finished benchmark INFO [23:30:51.965] [mlr3] Benchmark with 2 resampling iterations INFO [23:30:51.975] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:30:53.523] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:30:55.071] [mlr3] Finished benchmark INFO [23:30:55.393] [mlr3] Benchmark with 2 resampling iterations INFO [23:30:55.402] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:30:58.452] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:31:01.600] [mlr3] Finished benchmark INFO [23:31:02.476] [mlr3] Benchmark with 2 resampling iterations INFO [23:31:02.485] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:31:05.599] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:31:08.589] [mlr3] Finished benchmark INFO [23:31:09.527] [mlr3] Benchmark with 2 resampling iterations INFO [23:31:09.540] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:31:11.152] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:31:12.830] [mlr3] Finished benchmark INFO [23:31:13.183] [mlr3] Benchmark with 2 resampling iterations INFO [23:31:13.192] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:31:14.648] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:31:16.164] [mlr3] Finished benchmark INFO [23:31:16.509] [mlr3] Benchmark with 2 resampling iterations INFO [23:31:16.518] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:31:18.076] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:31:19.655] [mlr3] Finished benchmark INFO [23:31:25.484] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/5) INFO [23:31:39.774] [mlr3] Applying learner 'encode.oversample.classif.keras' on task 'Task' (iter 1/5) INFO [23:41:25.993] [mlr3] Applying learner 'encode.oversample.classif.rpart.tuned' on task 'Task' (iter 5/5) INFO [23:41:26.514] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:26.524] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:28.076] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:41:29.556] [mlr3] Finished benchmark INFO [23:41:29.860] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:29.871] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:41:31.308] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:32.798] [mlr3] Finished benchmark INFO [23:41:33.119] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:33.128] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:34.590] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:41:36.070] [mlr3] Finished benchmark INFO [23:41:36.380] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:36.390] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:41:37.931] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:39.432] [mlr3] Finished benchmark INFO [23:41:39.734] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:39.742] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:41:41.258] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:42.821] [mlr3] Finished benchmark INFO [23:41:43.142] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:43.151] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:41:44.688] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:46.247] [mlr3] Finished benchmark INFO [23:41:46.549] [mlr3] Benchmark with 2 resampling iterations INFO [23:41:46.575] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:41:54.057] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:42:01.728] [mlr3] Finished benchmark INFO [23:42:02.307] [mlr3] Benchmark with 2 resampling iterations INFO [23:42:02.316] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:42:19.842] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:42:37.793] [mlr3] Finished benchmark INFO [23:42:38.232] [mlr3] Benchmark with 2 resampling iterations INFO [23:42:38.241] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:42:48.070] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:42:58.204] [mlr3] Finished benchmark INFO [23:42:58.717] [mlr3] Benchmark with 2 resampling iterations INFO [23:42:58.725] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:00.236] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:01.786] [mlr3] Finished benchmark INFO [23:43:02.105] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:02.116] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:04.012] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:05.560] [mlr3] Finished benchmark INFO [23:43:05.855] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:05.865] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:21.464] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:37.014] [mlr3] Finished benchmark INFO [23:43:37.468] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:37.477] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:39.005] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:40.568] [mlr3] Finished benchmark INFO [23:43:40.858] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:40.867] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:42.325] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:43.809] [mlr3] Finished benchmark INFO [23:43:44.104] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:44.112] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:45.677] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:47.245] [mlr3] Finished benchmark INFO [23:43:47.539] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:47.550] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:48.970] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:50.432] [mlr3] Finished benchmark INFO [23:43:51.059] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:51.068] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:52.550] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:54.028] [mlr3] Finished benchmark INFO [23:43:54.359] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:54.367] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:43:55.882] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:43:57.398] [mlr3] Finished benchmark INFO [23:43:57.720] [mlr3] Benchmark with 2 resampling iterations INFO [23:43:57.729] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:44:13.646] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:44:29.483] [mlr3] Finished benchmark INFO [23:44:29.910] [mlr3] Benchmark with 2 resampling iterations INFO [23:44:29.920] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:44:35.498] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:44:41.045] [mlr3] Finished benchmark INFO [23:44:41.644] [mlr3] Benchmark with 2 resampling iterations INFO [23:44:41.655] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:44:57.040] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:45:13.366] [mlr3] Finished benchmark INFO [23:45:13.806] [mlr3] Benchmark with 2 resampling iterations INFO [23:45:13.815] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:45:15.729] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:45:17.581] [mlr3] Finished benchmark INFO [23:45:18.262] [mlr3] Benchmark with 2 resampling iterations INFO [23:45:18.271] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:45:38.748] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:45:58.884] [mlr3] Finished benchmark INFO [23:45:59.333] [mlr3] Benchmark with 2 resampling iterations INFO [23:45:59.341] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:46:00.874] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:46:02.443] [mlr3] Finished benchmark INFO [23:46:02.784] [mlr3] Benchmark with 2 resampling iterations INFO [23:46:02.793] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:46:04.270] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:46:05.786] [mlr3] Finished benchmark INFO [23:46:06.121] [mlr3] Benchmark with 2 resampling iterations INFO [23:46:06.132] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:46:28.130] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:46:50.117] [mlr3] Finished benchmark INFO [23:46:50.517] [mlr3] Benchmark with 2 resampling iterations INFO [23:46:50.525] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:46:52.054] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:46:53.652] [mlr3] Finished benchmark INFO [23:46:53.967] [mlr3] Benchmark with 2 resampling iterations INFO [23:46:53.975] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:46:55.486] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:46:56.993] [mlr3] Finished benchmark INFO [23:46:57.308] [mlr3] Benchmark with 2 resampling iterations INFO [23:46:57.316] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:47:05.536] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:47:13.633] [mlr3] Finished benchmark INFO [23:47:14.235] [mlr3] Benchmark with 2 resampling iterations INFO [23:47:14.244] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:47:30.960] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:47:47.580] [mlr3] Finished benchmark INFO [23:47:48.038] [mlr3] Benchmark with 2 resampling iterations INFO [23:47:48.048] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:48:04.965] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:48:21.421] [mlr3] Finished benchmark INFO [23:48:21.862] [mlr3] Benchmark with 2 resampling iterations INFO [23:48:21.871] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:48:23.810] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:48:25.702] [mlr3] Finished benchmark INFO [23:48:26.436] [mlr3] Benchmark with 2 resampling iterations INFO [23:48:26.465] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:48:34.978] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:48:43.489] [mlr3] Finished benchmark INFO [23:48:44.034] [mlr3] Benchmark with 2 resampling iterations INFO [23:48:44.046] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:48:45.587] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:48:47.207] [mlr3] Finished benchmark INFO [23:48:47.538] [mlr3] Benchmark with 2 resampling iterations INFO [23:48:47.547] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:48:49.179] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:48:50.816] [mlr3] Finished benchmark INFO [23:48:51.162] [mlr3] Benchmark with 2 resampling iterations INFO [23:48:51.172] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 2/2) INFO [23:48:54.066] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 1/2) INFO [23:48:57.275] [mlr3] Finished benchmark INFO [23:49:03.526] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 5/5) INFO [23:49:17.510] [mlr3] Applying learner 'encode.oversample.classif.rpart' on task 'Task' (iter 3/5) INFO [23:49:29.892] [mlr3] Finished benchmark
nr | resample_result | task_id | learner_id | resampling_id | iters | classif.ce | time_train | classif.precision | classif.recall |
---|---|---|---|---|---|---|---|---|---|
<int> | <list> | <chr> | <chr> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> |
1 | <environment: 0xd17d120> | Task | encode.oversample.classif.rpart.tuned | cv | 5 | 0.4636477 | 0 | 0.7921058 | 0.5526510 |
2 | <environment: 0xd163848> | Task | encode.oversample.classif.rpart | cv | 5 | 0.3031486 | 0 | 0.7847245 | 0.8418293 |
3 | <environment: 0xd11a190> | Task | encode.oversample.classif.keras | cv | 5 | 0.2209718 | 0 | 0.7795528 | 0.9988177 |
measures <- list(msr("classif.acc"), msr("classif.precision"), msr("classif.recall"))
performances = bmr$aggregate(measures)
performances
nr | resample_result | task_id | learner_id | resampling_id | iters | classif.acc | classif.precision | classif.recall |
---|---|---|---|---|---|---|---|---|
<int> | <list> | <chr> | <chr> | <chr> | <int> | <dbl> | <dbl> | <dbl> |
1 | <environment: 0x8e8ba9d0> | Task | encode.oversample.classif.rpart.tuned | cv | 5 | 0.5363523 | 0.7921058 | 0.5526510 |
2 | <environment: 0x8d5d2c88> | Task | encode.oversample.classif.rpart | cv | 5 | 0.6968514 | 0.7847245 | 0.8418293 |
3 | <environment: 0x40fdff90> | Task | encode.oversample.classif.keras | cv | 5 | 0.7790282 | 0.7795528 | 0.9988177 |
rr = bmr$aggregate()[learner_id == "encode.oversample.classif.rpart.tuned", resample_result][[1]]
rr$predictions()[[1]]$confusion
truth response 0 1 0 18196 4620 1 23123 7037
We can notice that our accuracy has increased with tunned parameters. The model will be then used in part 5 to predict gender with unseen data, i.e X_test
rr_keras=bmr$aggregate()[learner_id == "encode.oversample.classif.keras", resample_result][[1]]
rr_keras$predictions()[[1]]$confusion
truth response 0 1 0 41275 11580 1 44 77
# predict data for keras_learner without resamplin
learner_keras_nn$train(task)
prediction_keras <- learner_keras_nn$predict(task, row_ids = test_set)
# calculate performance
prediction_keras$confusion
truth response 0 1 0 41188 11685 1 13 90